

Jet Pipe Servovalves

JET PIPE SERVOVALVES PRINCIPLES OF OPERATION

and coils. A movable armature is mounted onto a frictionless pivot spring. A seal between the electromechanical and hydraulic sections ensures dry torque motor operation. Projector jet pipe assembly is attached to the torque motor armature. Stainless steel wire mesh 150 Receiver orifices are micron absolute filter protects first connected to the stage from large contaminants. spool end chambers. Force feedback from the spool to the torque motor jet is accomplished by a stainless steel spring. The spring is rigidly attached The jet pipe and to the jet pipe. receiver are made of hard, wear resistant materials for long life. Durable body supports torque Spool and O-Ring sleeve provide motor and houses filter, spool low wear chracteristics and

Modular torque motor consists of

performance stability.

permanent magnets, pole pieces

SERVOVALVE OPERATING PRINCIPLES

and sleeve.

The two-stage electrohydraulic flow control servovalve converts an electrical signal to precise proportional hydraulic flow. The servovalve can be separated into two stages:

- > The first stage pilot includes the torque motor, projector jet and receiver
- > The second stage body includes the spool and sleeve assembly

Hydraulic fluid at system pressure travels through the first stage wire mesh filter into a feedtube (Figure 1a) and out the projector jet. The projector jet directs this hydraulic fluid stream at two receivers, each of which is connected to the second stage spool end chambers.

The first stage torque motor receives an electrical signal applied as current to the coils, and converts it into a mechanical torque on the armature and jet pipe assembly. The torque output is directly proportional to the input current. As more current is applied to the valve, greater forces are exerted to rotate the armature assembly around its pivot point.

1

SFRVOVALVE OPERATION

At first stage null, the jet is directed exactly between the two receivers, making the pressures on both sides of the spool equal. The force balance created by equal pressures in both end chambers holds the spool in a stationary position. (See Figure 1a.)

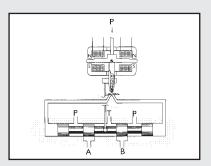


Figure 1a - At Neutral

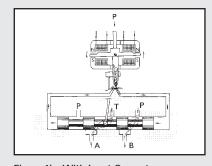


Figure 1b - With Input Current

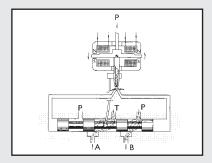


Figure 1c - Stabilized with Current

As the jet pipe and armature of the torque motor rotate around the pivot point (the result of input current), the fluid jet is directed to one of the two receivers creating a higher pressure in the spool end chamber connected to that receiver. The differential pressure created across the spool moves it in the direction opposite to the jet displacement. (See Figure 1b.)

Connected to the spool and jet pipe is a feedback spring assembly, which translates spool position into a force that is applied on the jet pipe in a proportional manner. Increased spool displacement away from null, increases the force exerted on the jet pipe. Forces transmitted from the spool to the jet pipe are opposing the forces trying to turn the armature jet pipe assembly. When the feedback spring force is equal to the forces from the

torque motor, the jet is returned to a position exactly between the two receivers. As mentioned before, such a position creates a pressure balance between the end chambers; then the spool will hold its position. (See Figure 1c.)

Since the torque motor forces are proportional to input current and the feedback forces are proportional to spool position, the resulting spool position is proportional to input current. Increasing current to the torque motor shifts the spool from null position.

Reversing polarity of the applied current, reverses forces on the armature and jet pipe. The hydraulic jet flow impinges on the other receiver, creating an imbalance in spool end chamber forces. The spool moves

in an opposite direction until a first stage force balance is achieved by the feedback spring. Jet flow is then directed between the receivers and equal pressure holds the spool in position.

Figure 2a illustrates flow out A of a four-way servovalve when the first stage pilot displaces the spool to the right. This movement opens slotted ports in the sleeve and fluid is metered from the supply pressure port to control port A, and from control port B to the return pressure port T.

Reversing spool motion to the left of the null position (Figure 2b) directs fluid from the supply pressure port to control port B and from control port A to the return pressure port T.

SPOOL PORTING

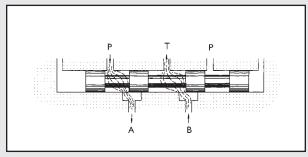


Figure 2a - Flow out A

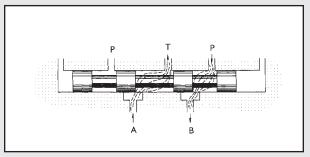


Figure 2b - Flow out B

Square slotted ports with the above spool motion gives a proportional flow output. This is demonstrated with Figure 3: Flow vs. Current Plot. Flow output of the servovalve changes in magnitude directly proportional to the level and polarity of the input current.

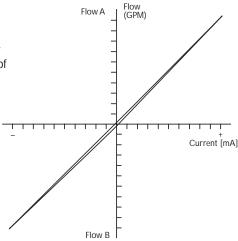
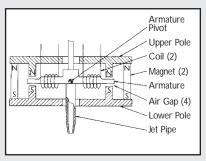
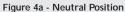


Figure 3 - Flow vs. Current Plot


The torque motor is located in the servovalve first stage and provides a means of converting an electrical input to a mechanical output. The term "torque" refers to the armature rotational motion around its pivot point, resulting from electrical and magnetic forces. This torque is instrumental in the servovalve electrical to mechanical power transfer.


The torque motor has an armature mounted on a torsion pivot spring and suspended in the air gaps of a magnetic field (Figure 4a). The two pole pieces, one polarized north and the other south by the permanent magnets, form the framework around the armature and provide paths for magnetic flux flow. When current flows through the coils, the armature becomes polarized and each end is attracted to one pole piece and repelled by the other (Figure 4b). The torque exerted on the armature is restrained by the torsion spring upon which the armature is mounted. This torsion spring makes armature output motion proportional to input current.

The rotational torque created is directly proportional to the amount of polarization or magnetic charge of the armature - increased armature polarization creates a higher force attraction to the pole pieces. Since the amount of polarization of the armature is proportional to the magnetic flux created by the current through the coils, torque output of the torque motor is proportional to the coil input current. The magnetic flux created by the coils is dependent on two factors: the number of coil wire turns and the strength of current that is applied. In other words, the torque of the motor is dependent on the ampere turns applied.

When armature polarization is reversed by input current polarity, the armature is attracted to the opposite pole pieces and the jet deflects to the opposite receiver.

TORQUE MOTOR SCHEMATIC

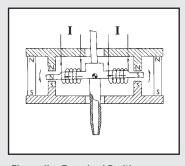


Figure 4b - Energized Position

Operating Pressure*

ports P, X, A and B 3,000 psi (210 bar)

(optional 5000 psi (350 bar)

port T up to 3,000 psi (210 bar)

Temperature Range

Fluid -4°F to 176°F Ambient: -40°F to 250°F

Seal Material Viton A, others on request

Operating Fluid Compatible with common

hydraulic fluids, other fluids on

request.

Recommended viscosity 60 – 450 SUS @ 100°F

System Filtration

High pressure filter (without bypass, but with dirt alarm) mounted in the main flow and, if possible, directly upstream of the valve.

Class of Cleanliness

The cleanliness of the hydraulic fluid greatly effects the performance (spool positioning, high resolution) and wear (metering edges, pressure gain, leakage) of the servovalve.

Recommended Cleanliness Class

For normal operation ISO 4406 < 14/11 For longer life ISO 4406 < 13/10

Recommended Filter Rating

For normal operation $\beta_{10} \ge 75$ (10 µm absolute) For longer life $\beta_5 \ge 75$ (5 µm absolute)

Installation Operations Any position fixed or movable.

Vibration 30 g, 3 axes

Degree of Protection EN50529P: class IP65, with mating

connector mounted.

Shipping Plate Delivered with an oil sealed

shipping plate.

STATIC PERFORMANCE

Rated Flow @ 1000 psid - ± 10%

Null Bias <± 2%

Null Flow Gain 50 to 150% nominal

Linearity < 7%

Hysteresis < 3%

Threshold < 0.2%

Temperature Null Shift <± 2% with 100°F variation

(56°C)

Supply Pressure Null Shift <± 2% with 1000 psi change

(70 bar)

Return Pressure Null Shift <± 2% from 0 to 100 psi

(7 bar)

Pressure Gain >30% of supply pressure @

1% rated current

^{*} Maximum special order is 5,000 psi

ELECTRICAL CHARACTERISTICS

A wide choice of coils is available for a variety of rated current requirements. The four torque motor coil leads are attached to the connector so external connections can provide series, parallel or single coil operation. Servovalve coils should be driven with current to provide consistency throughout the temperature range.

	Series		Par WW	allel 0000	Single	
Ohms	mA	V	mA	V	mA	V
27	50	2.7	100	1.4	100	2.7
80	25	4.0	50	2.0	50	4.0
81	20	3.2	40	1.6	40	3.2
250	10	5.0	20	2.5	20	5.0
1000	5	10	10	5.0	10	10.0

ELECTRICAL STANDARDS

Rated Current

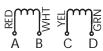
50, 20, 10 mA (standard)

Coil Resistance

80, 250, 1000 ohms per coil (standard)

Connector

MS3102E-14S-2P


B C D

Polarity

A+ B- flow out cylinder Port B C+ D- flow out cylinder Port B

Connector

PC02H-8-4P

Polarity

A+ B- flow out cylinder Port A C+ D- flow out cylinder Port A

Rated Flow

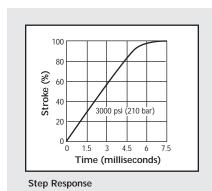
0.25 to 5 GPM @ 1000 psi drop

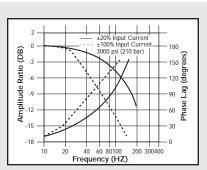
Internal Leakage

< 0.25 GPM @ 1000 psi

Connector Location

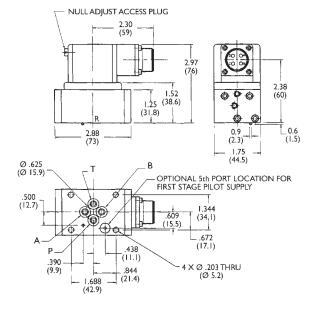
Port B (standard)


Weight


1.1 lbs. (0.50 kg)

Mounting Bolt

Thread: #10-32 UNF (M5) Length: 2.0 in. (50 mm)


208A-505 TYPICAL CHARACTERISTIC CURVES

Frequency Response

INSTALLATION DRAWING

Port Size Ø 0.173 (Ø 4.4)

O-Ring MS28775-011

Pilot Port

Ø 0.093 (Ø 2.4)

O-Ring MS28775-010

Rated Flow

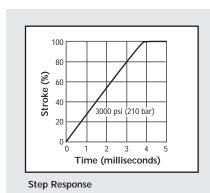
0.1 to 5 GPM @ 1000 psi drop

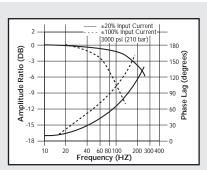
Internal Leakage

< 0.25 GPM @ 1000 psi

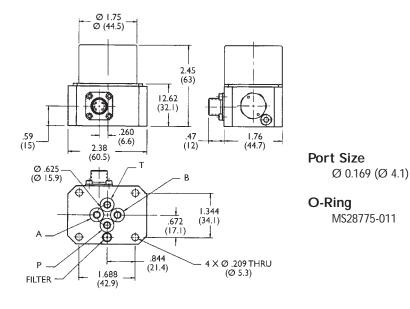
Field Replaceable Filter

75 micron absolute P/N 55319


Weight


0.88 lbs. (0.40 kg)

Mounting Bolt


Thread: #10-32 UNF (M5) Length: 1.5 in. (40 mm)

209-505 TYPICAL CHARACTERISTIC CURVES

Frequency Response

Rated Flow

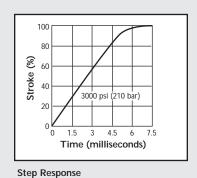
0.1 to 10 GPM @ 1000 psi drop

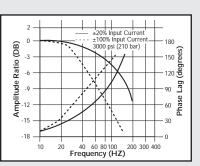
Internal Leakage

< 0.25 GPM @ 1000 psi

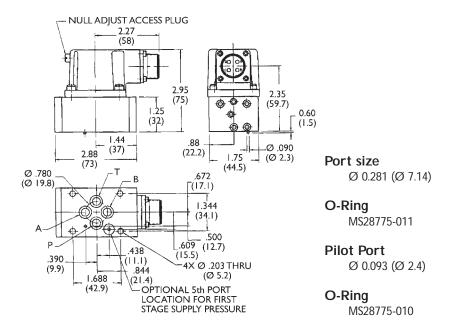
Connector Location

Port B (standard)


Weight


1.1 lbs. (0.50 kg)

Mounting Bolt


Thread: #10-32 UNF (M5) Length: 2.0 in. (50 mm)

211A-510 TYPICAL CHARACTERISTIC CURVES

Frequency Response

Rated Flow

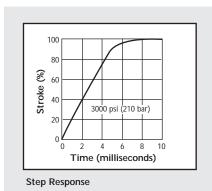
0.1 to 10 GPM @ 1000 psi drop

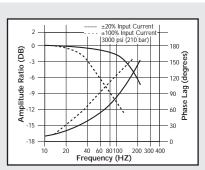
Internal Leakage

< 0.25 GPM @ 1000 psi

Field Replaceable Filter

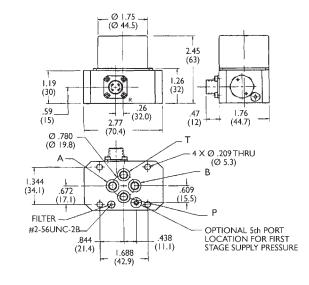
75 micron absolute P/N 55396


Weight


0.938 lbs. (0.42 kg)

Mounting Bolt

Thread: #10-32 UNF (M5) Length: 1.5 in. (40 mm)


214-510 TYPICAL CHARACTERISTIC CURVES

Frequency Response

INSTALLATION DRAWING

Port size Ø 0.242 (Ø 6.1)

O-Ring MS28775-011

Pilot Port Ø 0.093 (Ø 2.4)

O-Ring MS28775-010

Rated Flow

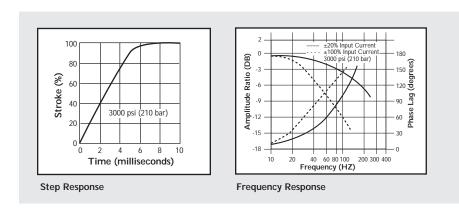
2.5 to 15 GPM @ 1000 psi drop

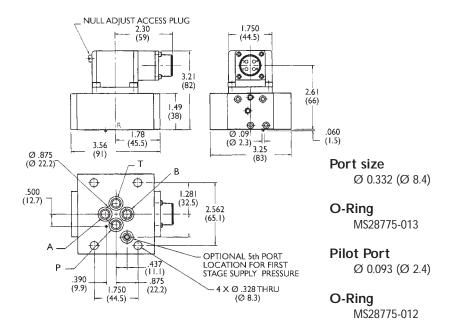
Internal Leakage

< 0.35 GPM @ 1000 psi

Connector Location

Port B (standard)


Weight


2.0 lbs. (0.91 kg)

Mounting Bolt

Thread: 5/16-18 (M8) Length: 2.0 in. (50 mm)

215A-515 TYPICAL CHARACTERISTIC CURVES

Rated Flow

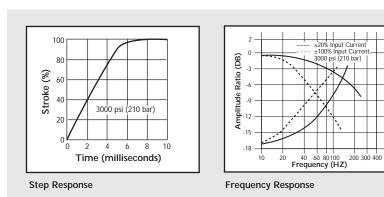
2.5 to 15 GPM @ 1000 psi drop

Internal Leakage

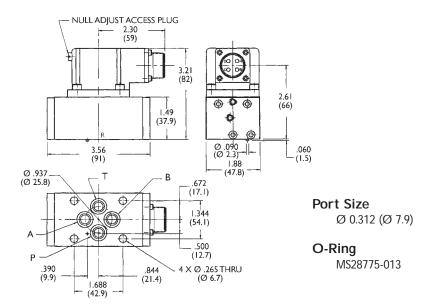
< 0.35 GPM @ 1000 psi

Connector Location

Port B (standard)


Weight

1.80 lbs. (0.82 kg)


Mounting Bolt

Thread: 1/4-28 (M6) Length: 2.25 in. (60 mm)

218-515 TYPICAL CHARACTERISTIC CURVES

INSTALLATION DRAWING

Phase I

30

Rated Flow

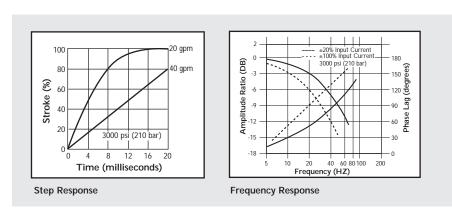
20 to 40 GPM @ 1000 psi drop

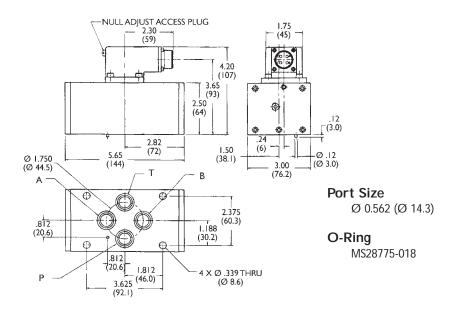
Internal Leakage

< 0.6 GPM @ 1000 psi

Connector Location

Port B (standard)


Weight


4.7 lbs. (2.14 kg)

Mounting Bolt

Thread: 5/16-18 (M8) Length: 3.0 in. (75 mm)

240-520 TYPICAL CHARACTERISTIC CURVES

Rated Flow

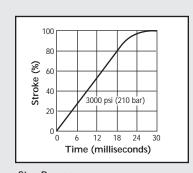
20 to 40 GPM @ 1000 psi drop

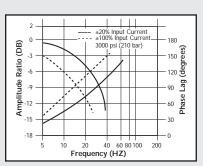
Internal Leakage

< 0.4 GPM @ 1000 psi

Connector Location

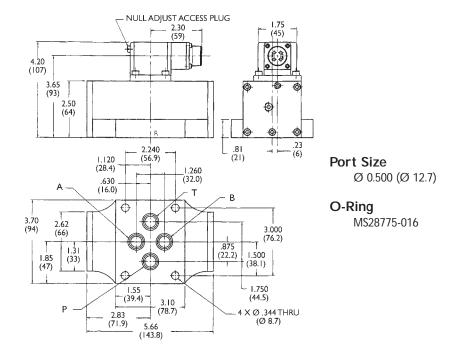
Port B (standard)


Weight


4.7 lbs. (2.14 kg)

Mounting Bolt

Thread: 5/16-18 (M8) Length: 1.25 in. (35mm)


242-540 TYPICAL CHARACTERISTIC CURVES

Step Response

Frequency Response

Rated Flow

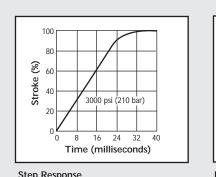
20 to 60 GPM @ 1000 psi drop

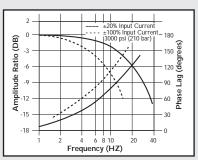
Internal Leakage

< 0.8 GPM @ 1000 psi

Connector Location

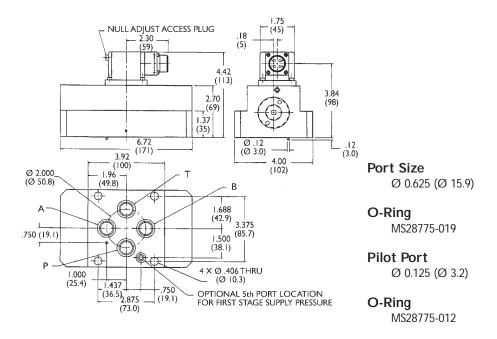
Port B (standard)


Weight


7.5 lbs. (3.4 kg)

Mounting Bolt

Thread: 3/8-24 (M10) Length: 2.0 in. (50 mm)


261-560 TYPICAL CHARACTERISTIC CURVES

Step Response

Frequency Response

JET PIPE SERVOVALVES PNEUMATIC SERVO PRODUCTS

200PN

SINGLE-STAGE SERVOVALVE

The low flow rate (0.5 SCFM) and small package size makes the Model 200PN perfectly suited for controlling animatronic head movements (lips, eyes, mouth, etc.), while keeping the figure's head size and weight to a minimum. A proportional input signal of ± 20 mA or ± 5 volts provides variable pneumatic flow control. Standard hose fittings screw into the valve body for ease of installation.

204PN

TWO-STAGE SERVOVALVE

The increased flow rate (4.5 SCFM) controls larger actuators for heavier movements like heads and arms. Input signals of ±20 mA or ±5 volts gives proportional output flow. Tube fittings built into the body permit quick plumbing connections.

161

MECHANICAL FEEDBACK ACTUATOR

This integral package contains servovalve, actuator and feedback mechanism to provide closed-loop position control without the need for an electrical feedback transducer. An input signal of 0 to 10 volts gives a directly proportional actuator position which corrects for any load changes. This cost effective package is available with a 1.0 inch (25.4 mm) bore diameter actuator and stroke lengths of 0.5 inch (12.7 mm), 1.0 inch (25.4 mm), 1.5 inches (38.1 mm) and 2.0 inches (50.8 mm). The 1.0 inch bore has a 62 pound (28 kg) stall force at 80 psi (5.5 bar).

162

MECHANICAL FEEDBACK ACTUATOR

This model has the same features as the Model 161, but is available with a 2.0 inch (50.8 mm) bore diameter actuator and 2.0 inch (50.8 mm) stroke for a maximum stall force of 250 pounds (113 kg) at 80 psi (5.5 bar).

162A

MECHANICAL FEEDBACK ACTUATOR

The Model 162A has the same bore, stroke and stall force as the Model 162, but has an increased no-load velocity of 3.5 inches per second (89 mm per second).

MODEL 161 - PNEUMATIC MECHANICAL FEEDBACK ACTUATOR

GENERAL SPECIFICATIONS

The following specifications apply to models 161, 162 and 162A.

System Filtration
25 micron
Coil Resistance
250 ohms per coil

Fluid Seals
Dry clean gas Viton

Temperature Range Polarity

40° to 160°F Actuator extends with polarity

shown

Pressure
Operating 40 to 160 psi
Proof 250 psi
Burst 425 psi

Hysteresis
3% max of rated current

Electrical Connection
#26 AWG color coded leads

Rated Current Stroke
0 to 40 mA (0 to 10v)

Zero Current Stroke
at retract position

161 MFB SPECIFICATIONS

Flow into Valve

0.8 SCFM @ 100 psi

Piston Diameter

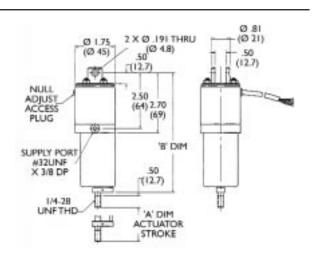
1.00 inch

Rod Diameter

0.25 inches

Effective Area

Extend 0.785 in² Retract 0.736 in²


Stall Load

Extend 62 lbs min @ 100 psi supply Retract 58 lbs min @ 100 psi supply

No Load Velocity

4.0 in/sec min @ 100 psi supply

INSTALLATION DRAWING

STROKE CHART

Model #	'A' DIM ± .1 Stroke	032 'B' DIM ± .060 Retracted
161-0.5-Y\	/Y 0.5 inc	h 4.64 inch
161-1.0-Y		
161-1.5-Y\	YY 1.5 incl	h 5.64 inch
161-2.0-Y\	YY 2.0 incl	h 6.14 inch

MODEL 162 & 162A - PNEUMATIC MECHANICAL FEEDBACK ACTUATORS

162 MFB SPECIFICATIONS

Flow into Valve

0.8 SCFM @ 100 psi

Piston Diameter

2.00 inches

Rod Diameter

0.25 inches

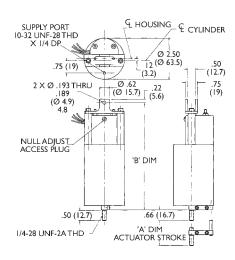
Effective Area

Extend 3.14 in^2 Retract 3.09 in^2

Stall Load

Extend 250 lbs min @

100 psi supply


Retract 240 lbs min @

100 psi supply

No Load Velocity

1.0 in/sec min @ 100 psi supply

INSTALLATION DRAWING

STROKE CHART

Model # 'A' DIM ± .023 'B' DIM ± .060 Stroke Retracted

162-2.0-YYY 2.0 inch 6.40 inch

162A MFB SPECIFICATIONS

Flow into Valve

2.0 SCFM @ 100 psi

Piston Diameter

2.00 inches

Rod Diameter

0.25 inches

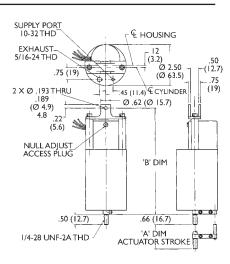
Effective Area

Extend 3.14 in² Retract 3.09 in²

Stall Load

Extend 250 lbs min @

100 psi supply


Retract 240 lbs min @

100 psi supply

No Load Velocity

3.5 in/sec min @ 100 psi supply

INSTALLATION DRAWING

STROKE CHART

Model #	'A' DIM ± .023 Stroke	'B' DIM ± .060 Retracted		
162A-2.0-YY	/ 2.0 inch	6.40 inch		

PNEUMATIC SERVOVALVES - TUBE MOUNT

GENERAL SPECIFICATIONS

System Filtration

25 micron

Fluid

Dry clean gas

Temperature Range

-40° to 160°F

Coil Resistance

250 ohms per coil

Pressure

Operating 80 to 160 psi Proof 250 psi

Burst 425 psi

Rated Current

±20 mA

Electrical Connection

#26 AWG color coded leads

Polarity

Green+, Yellow-, flow out CYL

Port 2

White+, Red-, flow out CYL

Port 2

Hysteresis

3% max of rated current

Seals

Viton

200PN SPECIFICATIONS

Design

Single-stage

Flow into Valve

0.8 SCFM @ 100 psi supply

No Load Cylinder Flow

0.5 SCFM @ 100 psi supply

Pressure Recovery

>80% of supply pressure

Hysteresis

3% max of rated current

Threshold

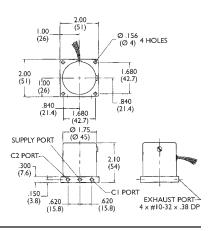
0.02% max of rated current

90° Phase Lag

200 Hz @ 100 psi supply

-3dB Amplitude Ratio

150 Hz @ 100 psi supply


Ports

 $\#10-32 \ x$.38 deep tapped holes

Mounting

4 holes .156 diameter

INSTALLATION DRAWING

204PN SPECIFICATIONS

Design

Two-stage

Flow into Valve

0.17 SCFM @ 100 psi supply

No Load Cylinder Flow

4.5 SCFM @ 100 psi supply

Pressure Gain

30% of supply pressure @ 2% change of rated current

Hysteresis

3% max of rated current

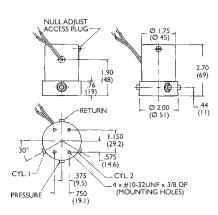
Threshold

0.2% max of rated current

90° Phase Lag

30 Hz @ 100 psi supply

-3dB Amplitude Ratio


30 Hz @ 100 psi supply

Ports

1/4" Legris instant fittings for 1/4" diameter plastic tube

Mounting

Four #10-32 x 3/8 tapped holes

PNEUMATIC SERVOVALVES - MANIFOLD MOUNT

GENERAL SPECIFICATIONS

System Filtration

25 Micron

Fluid

Dry clean gas

Temperature Range

-40° to 160°F

Pressure

80 to 160 psi Operating

Proof 250 psi Burst

425 psi

Hysteresis

3% max of rated current

Seals

Viton

202PN SPECIFICATIONS

Design

Single-stage

Flow into Valve

2.0 SCFM @ 100 psi supply

No Load Cylinder Flow

1.25 SCFM @ 100 psi supply

Pressure Recovery

>80% of supply pressure

Rated Current

±40% mA

Coil Resistance

250 ohms per coil

Threshold

0.02% max of rated current

90° Phase Lag

200 Hz @ 100 psi supply

-3dB Amplitude Ratio

150 Hz @ 100 psi supply

Electrical Connection

Bendix Pygmy PCO2H-8-4P

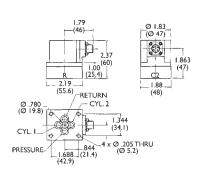
Ports

0.12 diameter

Port O-Ring Size

MS28775-012

Polarity


A+ B- flow out CYL Port 1

C+ D- flow out

CYL Port 1

INSTALLATION **DRAWING**

Port Size Ø 0.187 (Ø 4.7)

O-Ring

MS28775-012

211APN SPECIFICATIONS

Design

Two-stage

Rated Flow

12 SCFM @ 100 psi pressure drop

Leakage

0.2 SCFM @ 100 psi Internal External none

Pressure Gain

30% supply min @ 2% rated input

90° Phase Lag

>40 Hz @ 100 psi supply

-3dB Amplitude Ratio 40 Hz @ 100 psi supply

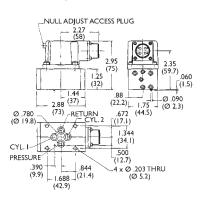
Electrical Connector

MS3102E-14S-2P

Ports

.281 diameter

Port O-Ring size


MS28775-011 (5th port -010)

Polarity

A+ B- flow out CYL Port 2 C+ D- flow out CYL Port 2

INSTALLATION **DRAWING**

Port Size Ø 0.281

O-Ring MS28775-011

SYSTEM FLUSHING

Cleaning the hydraulic fluid prior to initial installation of the servovalve onto a new or overhauled servo system, ensures extended valve operating life. Circulating hydraulic fluid through the system filters and manually exercising load actuators, will remove trapped particles and built-in contamination.

A new system is especially susceptible to contamination because particles clinging to new components can break away when initially washed with fluid flow. Hoses must sustain many hours of flow to flush all residue, and piping must be pickled and passivated. Piping with welded joints likely contains unwanted welding beads. Chunks of O-Ring, lint, metal chips and moisture are a few forms of contamination contributing to component failure in a new hydraulic system.

IMPORTANT NOTE

Start-up failures can be substantially reduced by following proper flushing procedures prior to installing servoyalves or other sensitive components. A typical flushing procedure incorporates the following:

- 1. Install a flushing fixture that is servovalve footprint compatible. The flushing fixture should interconnect the control ports (A and B).
- 2. Install new filter elements.
- 3. Circulate the hydraulic fluid at system operating pressure for a minimum of 8 hours. The length of system flushing time determines fluid cleanliness.
- 4. Monitor filter indicators while flushing and change the elements when indicators show excessive contamination levels.
- 5. Stroking cylinders or motors while flushing dislodges particles trapped in these components.
- 6. When flushing is complete, remove all filter elements and replace with new ones.
- 7. Install servovalves.

ADJUSTING SERVOVALVE NULL

Moog Atchley Controls servovalves are null adjusted at the factory and installation onto a system may require readjustment. Optimum null adjustment can be achieved when done with the equipment upon which the servovalve will be used. Control electronics must be stable and fluid must be at normal operating temperature and pressure.

To determine if the servovalve null needs adjustment, disconnect the electrical cable from the valve. If the actuator drifts excessively either direction, the valve null can be adjusted to stop the drift. It may be impossible to stop actuator drift completely and this should not be a concern. The servovalve null adjustment is not meant to be an absolute zeroing mechanism. Slowing the drift to a minimum allows the control electronics to achieve servovalve zero and maintain drift control throughout system operation.

PROCEDURE

ALL SERVOVALVES EXCEPT 231

Please read "Adjusting Servovalve Null" before starting. Required tools:

I Screwdriver

I Allen wrench (1/16")

The servovalve null adjustment is located on the valve torque motor and can be reached by using a screwdriver to remove the access hole brass plug on the cover. A 1/16" Allen wrench can be inserted into the null adjustment access hole and, when engaged in the null adjustment, can be rotated in either direction. If turning one direction increases actuator drift speed, reverse turning direction. If actuator drift slows while rotating the Allen wrench, keep turning in that direction until actuator stops moving. If actuator drifts into a stop, it may be necessary to re-connect the electrical cable and bring the actuator to center position again.

IMPORTANT NOTE

Always remember to replace the null adjustment access screw. This keeps dirt from entering the torque motor and extends the operating life of the servovalve.

Re-connect electrical cable after adjustment is complete.

PROCEDURE

FOR MODEL 231

Please read "Adjusting Servovalve Null" before starting.

Required tools:

I Allen wrench (3/16")

The servovalve null adjustment is located on the valve body end cap nearest the torque motor. The null adjustment is a 3/16" Allen screw in the center of the spool end cap. A 3/16" Allen wrench can be inserted into the null adjustment and rotated either direction If turning one direction increases actuator drift, reverse turning direction. If actuator drift slows while rotating the Allen wrench, keep turning in that direction until actuator drift stops. Continue adjustment until drift direction changes and then turn Allen wrench in opposite direction until actuator stops moving. If actuator drifts into a stop, it may be necessary to re-connect the electrical cable and bring the actuator to center position again.

IMPORTANT NOTE

Less than one turn is sufficient to null the servovalve. If two turns fail to achieve null, further system troubleshooting is necessary to correct the problem.

Re-connect electrical cable after adjustment is complete.

PROCEDURE

OPTIONAL MAGNETIC NULL ADJ.

Please read "Adjusting Servovalve Null" before starting.

Required tools:

1 Allen wrench (.050 ")

The servovalve magnetic null adjustment is a knurled knob located on top of the valve torque motor cover. Null adjustment is made by loosening the two locking screws with a .050" Allen wrench and rotating the knurled knob. If turning one direction increases actuator drift, reverse turning direction. If actuator drift slows while rotating the adjustment, keep turning in that direction until actuator drift stops. Continue adjustment until drift direction changes and then turn knurled knob in opposite direction until actuator stops moving. If actuator drifts into a stop, it may be necessary to re-connect the electrical cable and bring the actuator to center position again.

Less than one turn is sufficient to null the servovalve. If one turn fails to achieve null, further system troubleshooting is necessary to correct the problem.

When adjustment is complete, tighten the locking screws to prevent knurled knob from inadvertent rotation. Re-connect electrical cable after adjustment is complete.

OPTIONS AND MANIFOLD SELECTION

OPTIONS

Electrical Connectors

- ➤ MS mating connector P/N 91075
- ➤ Bendix Model PC02H-8-4P (mating connector P/N 91716)
- Bendix Model PC02H-8-4P connector in body (209 & 214 only)
- > Pigtails (4 wires, specify length)

- > Intrinsically safe coils (FM certified Class 1, Groups A, B, C and D; Class II, Group G)
- ➤ High Temperature rated coils (350° F)
- A wide selection of electrical current and resistance combinations
- Triple redundant coils

Special Flow Configurations

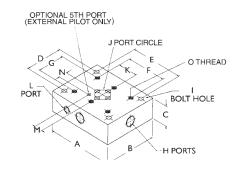
- Overlap or underlap
- Dual flow gain
- > Shaped flow gain

Conditioning -**Underwater Service**

- > Vented torque motor cover
- ➤ Pigtails

Isolated Pilot Supply Pressure Port

Accepts external pilot supply

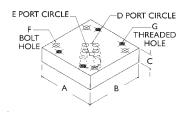

Rated for 5000 PSI Operation

Stainless steel body

Magnetic Null Adlustment

- Ease of adjustment
- Isolates torque motor

SUBPLATE DRAWING


SUBPLATE CHARTS

Model #	A	B	C	D	E	F	G	H	I	J
	Length	Width	Height	Mounting	Mounting	Mounting	Mounting	Ports SAE J514	Bolt Hole	Port Circle
208/209	5.0	4.0	1.5	2.875	4.00	1.688	1.688	-4 to -12	.344	.625
500-206-X	(127.0)	(101.6)	(38.1)	(73.0)	(101.6)	(42.87)	(42.87)		(8.7)	(15.88)
211A/214	5.0	4.0	1.5	2.875	4.00	1.688	1.344	-4 to -12	.344	.780
500-205-X	(127.0)	(101.6)	(38.1)	(73.0)	(101.6)	(42.87)	(34.14)		(8.7)	(19.81)
215A	5.0	4.0	1.5	2.875	4.00	1.750	2.562	-4 to -12	.344	.875
500-215-X	(127.0)	(101.6)	(38.1)	(73.0)	(101.6)	(44.45)	(65.07)		(8.7)	(22.22)
218	5.0	4.0	1.5	2.875	4.00	1.688	1.344	-4 to -12	.344	.937
500-218-X	(127.0)	(101.6)	(38.1)	(73.0)	(101.6)	(42.87)	(34.14)		(8.7)	(23.80)
225	5.0	4.0	1.5	3.25	4.00	3.500	1.75	-8 to -12	.344	1.375
500-225-X	(127.0)	(101.6)	(38.1)	(82.5)	(101.6)	(88.90)	(44.45)		(8.7)	(34.93)
231/242 500-231-X	6.0 (152.4)	6.0 (152.4)	2.0 (50.8)	4.0 (101.6)	5.0 (127.0)	2.24 (56.90)	3.000 (76.20)	-8 to -16	.344 (8.7)	Diamond
240	6.0	5.0	1.87	4.0	4.5	3.625	2.375	-10 to -24	.390	1.750
500-240-X	(152.4)	(127.0)	(47.5)	(101.6)	(114.3)	(92.07)	(60.32)		(9.9)	(44.45)
261	7.0	6.0	2.0	4.75	4.5	2.875	3.375	-12 to -32	.531	2.000
500-261-X	(177.8)	(152.4)	(50.8)	(120.6)	(114.3)	(73.02)	(85.72)		(13.5)	(50.80)
290 500-290-X	7.0 (177.8)	6.0 (152.4)	2.0 (50.8)	4.75 (120.6)	4.5 (114.3)	2.75 (69.75)	3.375 (85.72)	-24 to -40	.531 (13.5)	Diamond

Servovalve Model Subplate Model	208/209 500-206-C-X	211A/214 500-205-C-X	215A 500-215-C-X	218 500-218-C-X	225 500-225-C-X	242 500-231-C-X	240 500-240-C-X	261 500-261-C-X	290 500-290-C-X
L SAE J514	-4	-4	-4	-	-4	-	-	-4	-4
M	.438 (11.13)	.438 (11.13)	.438 (11.13)	-	.781 (19.84)	-	-	.750 (19.05)	1.375 (34.93)
N	.609 (15.47)	.609 (15.47)	.937 (23.80)	-	.875 (22.22)	-	-	1.500 (38.10)	1.450 (36.83)

ADAPTER PLATE

	A	B	C	D from	E to	F	G
	Length	Width	Height	Port Circle	Port Circle	Bolt Hole	Thread
Model 53781	3.25	2.5	.588	.780	.875	.344	10-32
from .780 to .875	(82.55)	(63.50)	(14.73)	(19.81)	(22.22)	(8.74)	

Australia Mulgrave
Brazil São Paulo
China Hong Kong
Shanghai
Denmark Cöpenhagen
England Tewkesbury
Finland Espoo
France Rungis

Germany Böblingen
India Bangalore
Ireland Ringaskiddy
Italy Brescia
Malnate

Japan Hiratsuka Korea Seoul

Luxembourg Luxembourg City

Philippines Baguio
Singapore Singapore
Spain Orio
Sweden Askim

USA East Aurora

Moog Inc., East Aurora, NY 14052-0018 Telephone: 716/655-3000 Fax: 716/655-1803 Toll Free: 1-800-272-MOOG http://www.moog.com